Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Clin Transl Oncol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625493

RESUMO

BACKGROUND: Cancer stem cells (CSCs) represent a potential mechanism contributing to tumorigenesis, metastasis, recurrence, and drug resistance. The objective of this study is to investigate the status quo and advancements in CSC research utilizing bibliometric analysis. METHODS: Publications related to CSCs from 2010 to 2022 were collected from the Web of Science Core Collection database. Various analytical tools including CiteSpace, VOSviewer, Scimago Graphica, and GraphPad Prism were used to visualize aspects such as co-authorship, co-occurrence, and co-citation within CSC research to provide an objective depiction of the contemporary status and developmental trajectory of the CSC field. RESULTS: A total of 22,116 publications were included from 1942 journals written by 95,992 authors. Notably, China emerged as the country with the highest number of publications, whereas the United States exerted the most significant influence within the field. MD Anderson Cancer Center emerged as the institution making the most comprehensive contributions. Wicha M.S. emerged as the most prolific and influential researcher. Among journals, Cancers emerged as a focal point for CSC research, consistently publishing a wealth of high-quality papers. Furthermore, it was observed that most journals tended to approach CSC research from molecular, biological, and immunological perspectives. The research into CSCs encompassed a broad array of topics, including isolation and enrichment techniques, biomarkers, biological characteristics, cancer therapy strategies, and underlying biological regulatory mechanisms. Notably, exploration of the tumor microenvironment and extracellular vesicles emerged as burgeoning research frontiers for CSCs. CONCLUSION: The research on CSCs has garnered growing interest. A trend toward multidisciplinary homogeneity is emerging within the realm of CSCs. Further investigation could potentially center on the patients of extracellular vesicles and the tumor microenvironment in relation to CSCs.

2.
Open Forum Infect Dis ; 11(4): ofae137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577029

RESUMO

The immune mechanisms of long coronavirus disease 2019 (COVID) are not yet fully understood. We aimed to investigate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory immune responses in discharged COVID-19 patients with and without long COVID symptoms. In this cross-sectional study, we included 1041 hospitalized COVID-19 patients with the original virus strain in Wuhan (China) 12 months after initial infection. We simultaneously conducted a questionnaire survey and collected peripheral blood samples from the participants. Based on the presence or absence of long COVID symptoms during the follow-up period, we divided the patients into 2 groups: a long COVID group comprising 480 individuals and a convalescent group comprising 561 individuals. Both groups underwent virus-specific immunological analyses, including enzyme-linked immunosorbent assay, interferon-γ-enzyme-linked immune absorbent spot, and intracellular cytokine staining. At 12 months after infection, 98.5% (1026/1041) of the patients were found to be seropositive and 93.3% (70/75) had detectable SARS-CoV-2-specific memory T cells. The long COVID group had significantly higher levels of receptor binding domain (RBD)-immunoglobulin G (IgG) levels, presented as OD450 values, than the convalescent controls (0.40 ± 0.22 vs 0.37 ± 0.20; P = .022). The magnitude of SARS-CoV-2-specific T-cell responses did not differ significantly between groups, nor did the secretion function of the memory T cells. We did not observe a significant correlation between SARS-CoV-2-IgG and magnitude of memory T cells. This study revealed that long COVID patients had significantly higher levels of RBD-IgG antibodies when compared with convalescent controls. Nevertheless, we did not observe coordinated SARS-CoV-2-specific cellular immunity. As there may be multiple potential causes of long COVID, it is imperative to avoid adopting a "one-size-fits-all" approach to future treatment modalities.

3.
J Environ Manage ; 357: 120610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581889

RESUMO

Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.


Assuntos
Recuperação e Remediação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Carvão Vegetal , Solo
4.
Chest ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431050

RESUMO

BACKGROUND: Corticosteroids have beneficial effects in improving outcomes in hospitalized patients with severe COVID-19 by suppressing excessive immune responses. However, the effect of corticosteroids on the humoral and T-cell responses of survivors of COVID-19 1 year after infection remains uncertain because it relates to the extent of immediate, antigen-specific defense provided by protective memory. RESEARCH QUESTION: What is the effect of corticosteroids on long-term humoral and T-cell immune responses? STUDY DESIGN AND METHODS: In this retrospective cohort study conducted at a single center, we analyzed data from a cohort who had survived COVID-19 to compare the 1-year seropositivity and titer changes in neutralizing antibodies (NAbs) and SARS-CoV-2-specific antibodies. Additionally, we evaluated the magnitude and rate of SARS-CoV-2-specific T-cell response in individuals who received corticosteroids during hospitalization and those who did not. RESULTS: Our findings indicated that corticosteroids do not statistically influence the kinetics or seropositive rate of NAbs against the Wuhan strain of SARS-CoV-2 from 6 months to 1 year. However, subgroup analysis revealed a numerical increase of absolute NAbs titers, from 20.0 to 28.2, in categories where long-term (> 15 days) and high-dose (> 560 mg) corticosteroids are administered. Similarly, corticosteroids showed no significant effect on nucleoprotein and receptor-binding domain IgG at 1 year, except for spike protein IgG (ß, 0.08; 95% CI, 0.04-0.12), which demonstrated a delayed decline of titers. Regarding T-cell immunity, corticosteroids did not affect the rate or magnitude of T-cell responses significantly. However, functional assessment of memory T cells revealed higher interferon-γ responses in CD4 (ß, 0.61; 95% CI, 0.10-1.12) and CD8 (ß, 0.63; 95% CI, 0.11-1.15) memory T cells in the corticosteroids group at 1 year. INTERPRETATION: Based on our findings, short-term and low-dose corticosteroid therapy during hospitalization does not have a significant effect on long-term humoral kinetics or the magnitude and rate of memory T-cell responses to SARS-CoV-2 antigens. However, the potential harmful effects of long-term and high-dose corticosteroid use on memory immune responses require further investigation.

5.
Chemosphere ; 346: 140580, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303392

RESUMO

Hydrogen peroxide (HP) was used to pretreat wheat straw (WS) for microwave biochar production at 100-600 W, the physicochemical properties of pretreated WS and biochar products as well as heavy metals adsorption performance were investigated. Results showed that HP enhanced specific surface area (SSA) and pore volume (PV) of WS, and the largest SSA (190.35 m2 g-1) and PV (0.1493 cm3 g-1) of biochar were obtained at microwave powers of 600 W (HPWS600) and 500 W (HPWS500), respectively. HPWS500 showed maximum adsorption capacities, which were 57.56, 190.21, and 65.16 mg g-1 for Cd2+, Pb2+, and Cu2+, respectively. Solution pH values and cation concentrations exhibited significant effects on adsorption capacities of biochar. The pseudo-second-order kinetic and Langmuir isotherm models fitted better for metal adsorption process. The FTIR results suggested that chemisorption mechanisms including precipitation with carbonate and complexation with oxygen-containing functional groups might be predominant adsorption mechanisms. These results suggest that HP pretreatment has excellent potential for biochar production.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Peróxido de Hidrogênio , Adsorção , Micro-Ondas , Metais Pesados/química , Carvão Vegetal/química , Cinética , Triticum , Poluentes Químicos da Água/análise
6.
Placenta ; 148: 77-83, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38417305

RESUMO

INTRODUCTION: Corin protein and its coding gene variants have been associated with hypertensive disorders of pregnancy (HDP), but the underlying mechanisms are unclear. As a mediator linking fixed genome with the dynamic environment, DNA methylation at the CORIN gene may link corin with HDP but not has been studied. This study aimed to examine whether CORIN promoter methylation and HDP in Chinese pregnant women. METHODS: Based on a cohort of Chinese pregnant women, we designed a nested case-control study including 196 cases with HDP and 200 healthy controls. DNA methylation levels in the CORIN promoter were quantified by pyrosequencing using peripheral blood before 20 gestational weeks. The association between DNA methylation in CORIN promoter and HDP was systemically examined by single CpG association analysis, followed by gene-based analysis. Multiple testing was controlled by the false discovery rate (FDR) method. RESULTS: The single CpG association analysis found that, among the 5 CpG sites assayed, hypermethylation at one CpG site (Chr4:47839945) was significantly associated with HDP (OR = 1.94, raw P = 0.020), but the significance did not survive for multiple testing correction (FDR-P = 0.100). The gene-based association analysis found that DNA methylation of the 5 CpG sites was jointly associated with HDP (raw P = 0.003). In addition to HDP, CORIN promoter methylation was also significantly associated with dynamic blood pressure during pregnancy (raw P < 0.05). DISCUSSION: Hypermethylation in CORIN promoter at early pregnancy was associated with the risk of HDP during late pregnancy in Chinese women. However, further evidence is required to establish the causality between CORIN promoter methylation and HDP.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Estudos de Casos e Controles , Pré-Eclâmpsia/genética , Pressão Sanguínea , Metilação de DNA , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
7.
Environ Pollut ; 343: 123148, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104766

RESUMO

Heavy metal pollution in water caused by industrial activities has become a global environmental issue. Among them, manganese mining and smelting activities have caused the combined pollution of Cr(VI) and Mn(II) in water, posing a serious ecotoxicological risk to ecological environments and human health. To efficiently remove Cr(VI) and Mn(II) from wastewater, a novel biochar supported nanoscale zerovalent iron-calcium alginate composite (CA/nZVI/RSBC) was synthesized by liquid-phase reduction and calcium alginate embedding methods. The adsorption performance and mechanisms of Cr(VI) and Mn(II) by CA/nZVI/RSBC were investigated. The maximum adsorption capacities of Cr(VI) and Mn(II) onto CA/nZVI/RSBC fitted by the Langmuir model were 5.38 and 39.78 mg/g, respectively, which were much higher than the pristine biochar. The iron release from CA/nZVI/RSBC was comparatively lower than that of nZVI/RSBC. Mn(II) presence enhanced the reduction of Cr(VI) by CA/nZVI/RSBC. The results of XRD, XPS, and site energy distribution analysis indicated that redox was the predominant mechanism of Cr(VI) adsorption, while electrostatic attraction dominated Mn(II) adsorption. This study provides a novel alternative way for the simultaneous removal of Cr(VI) and Mn(II) in wastewater.


Assuntos
Ferro , Poluentes Químicos da Água , Humanos , Águas Residuárias , Alginatos , Poluentes Químicos da Água/análise , Cromo/análise , Carvão Vegetal , Adsorção , Água
9.
Nat Plants ; 9(12): 2042-2058, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38066290

RESUMO

Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Homeostase , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo
10.
Front Chem ; 11: 1280999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927560

RESUMO

Introduction: The rising incidence of type 2 diabetes has seriously affected international public health. The search for more drugs that can effectively treat diabetes has become a cutting-edge trend in research. Coenzyme Q10 (CoQ10) has attracted much attention in the last decade due to its wide range of biological activities. Many researchers have explored the clinical effects of CoQ10 in patients with type 2 diabetes. However, CoQ10 has low bio-availability due to its high lipophilicity. Therefore, we have structurally optimized CoQ10 in an attempt to exploit the potential of its pharmacological activity. Methods: A novel coenzyme Q10 derivative (L-50) was designed and synthesized by introducing a group containing bromine atom and hydroxyl at the terminal of coenzyme Q10 (CoQ10), and the antidiabetic effect of L-50 was investigated by cellular assays and animal experiments. Results: Cytotoxicity results showed that L-50 was comparatively low toxicity to HepG2 cells. Hypoglycemic assays indicated that L-50 could increase glucose uptake in IR-HepG2 cells, with significantly enhanced hypoglycemic capacity compared to the CoQ10. In addition, L-50 improved cellular utilization of glucose through reduction of reactive oxygen species (ROS) accumulated in insulin-resistant HepG2 cells (IR-HepG2) and regulation of JNK/AKT/GSK3ß signaling pathway, resulting in hypoglycemic effects. Furthermore, the animal experiments demonstrated that L-50 could restore the body weight of HFD/STZ mice. Notably, the findings suggested that L-50 could improve glycemic and lipid metabolism in HFD/STZ mice. Moreover, L-50 could increase fasting insulin levels (FINS) in HFD/STZ mice, leading to a decrease in fasting blood glucose (FBG) and hepatic glycogen. Furthermore, L-50 could recover triglycerides (TG), total cholesterol (T-CHO), lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels in HFD/STZ mice. Discussion: The addition of a bromine atom and a hydroxyl group to CoQ10 could enhance its anti-diabetic activity. It is anticipated that L-50 could be a promising new agent for T2DM.

11.
J Periodontal Res ; 58(6): 1290-1299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723987

RESUMO

BACKGROUND AND OBJECTIVE: The purpose of this study was to determine if chronic periodontitis (CP) may induce hyperinsulinemia and may have the effect of on pancreatic ß-cell proliferation in a rat model. MATERIALS AND METHODS: Twelve male Sprague-Dawley rats were divided into two groups: the CP group and the control group (Con group). The following contents were evaluated: pathological changes in periodontal soft and hard tissues; serum lipopolysaccharide (LPS) level, serum fasting insulin (FINS) level, fasting blood glucose (FBG) level, and homeostasis model assessment (HOMA) ß (HOMA-ß) index; histopathological examination of islets; immunohistochemistry of insulin and p-Smad2 expression in islets; immunofluorescence of changes in the relative number of ß-cells and the number of Ki67-positive ß-cells. Western blotting was used to analyze p-Smad2/Smad2 levels. Results were analyzed by two independent samples t tests. RESULTS: Increased serum LPS level, FINS level, and HOMA-ß index were observed in the rats of the CP group; FBG level did not change significantly; histological assessments showed an enlarged islet area, increased insulin content, relatively increased ß-cells, increased Ki67-positive ß-cells, and decreased p-Smad2 expression in islets in the rats of the CP group. CONCLUSION: Our study results link CP-induced hyperinsulinemia with changes in islets, such as islet hyperplasia and compensatory ß-cell proliferation, by using a CP rat model.


Assuntos
Periodontite Crônica , Hiperinsulinismo , Ilhotas Pancreáticas , Ratos , Masculino , Animais , Ilhotas Pancreáticas/patologia , Ratos Sprague-Dawley , Periodontite Crônica/metabolismo , Antígeno Ki-67/metabolismo , Lipopolissacarídeos/farmacologia , Hiperinsulinismo/complicações , Hiperinsulinismo/metabolismo , Insulina , Glicemia/metabolismo
12.
Environ Pollut ; 336: 122409, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597728

RESUMO

Quinolone antibiotics are emerging environmental contaminants, which cause serious harm to the ecological environment and human health. How to effectively remove these emerging pollutants from water remains a major challenge worldwide. In this study, a novel Fe/Ti biochar composite (Fe/Ti-MBC) was prepared by facile one-step co-pyrolysis of wood chips with hematite and titanium dioxide (TiO2) for adsorption and photocatalytic degradation of ciprofloxacin (CIP) and norfloxacin (NOR) in water. The results showed that the degradation efficiencies of Fe/Ti-MBC to CIP and NOR were 88.4% and 88.0%, respectively. The π-π interactions and polar interactions are the main adsorption mechanisms for CIP and NOR. In the photocatalytic process, h+ and ·OH are the main active substances for the oxidative degradation of CIP and NOR. This study shows that Fe/Ti-MBC is an effective and recyclable composite, providing a novel alternative way for antibiotics degradation.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Adsorção , Antibacterianos , Ciprofloxacina , Carvão Vegetal , Norfloxacino , Água
13.
Sci Total Environ ; 894: 164810, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37308020

RESUMO

Heavy metals pollution in water caused by the intensification of industrial processes and human activities has attracted worldwide attention. Finding an environmental-friendly and efficient remediation method is in need. In this study, the calcium alginate entrapment and liquid-phase reduction method were used to prepare calcium alginate-nZVI-biochar composite (CANRC), which was firstly used to remove Pb2+, Zn2+, and Cd2+ in water. The effects of pyrolysis temperature, solution pH, and coexisting ions, etc. during adsorption processes were explored. Scanning electron microscope-Energy dispersive spectrometer (SEM-EDS), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the physicochemical properties of CANRC before and after adsorption. Different adsorption models and site energy analysis were used to analyze the possible mechanisms. The results showed that CANRC prepared at 300 °C and a 5 wt% Fe loading ratio had the maximum adsorption capacities with a dosage of 2.5 g/L and pH = 5.0- 6.0. The adsorption process was more in line with the Langmuir isotherm model dominated by monolayer adsorption. The maximum adsorption capacities of Pb2+, Zn2+, and Cd2+ were 247.99, 71.77, and 47.27 mg/g, respectively. Site energy analysis combined with XRD and XPS analysis indicated that surface complexation and precipitation were the main adsorption mechanisms. This study provides an alternative way for the removal of heavy metals from water.

14.
RSC Adv ; 13(21): 14384-14392, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180009

RESUMO

Biochar has been recognized as a promising sustainable adsorbent for removing pollutants from wastewater. In this study, two natural minerals, attapulgite (ATP) and diatomite (DE) were co-ball milled with sawdust biochar (pyrolyzed at 600 °C for 2 h) at ratios of 10-40% (w/w) and examined the ability of methylene blue (MB) to be removed from aqueous solutions by them. All the mineral-biochar composites sorbed more MB than both ball milled biochar (MBC) and ball milled mineral alone, indicating there was a positive synergy in co-ball milling biochar with these minerals. The 10% (w/w) composites of ATP:BC (MABC10%) and DE:BC (MDBC10%) had the greatest MB maximum adsorption capacities (modeled by Langmuir isotherm modeling) and were 2.7 and 2.3 times that of MBC, respectively. The adsorption capacities of MABC10% and MDBA10% were 183.0 mg g-1 and 155.0 mg g-1 at adsorption equilibrium, respectively. These improvements can be owing to the greater content of oxygen-containing functional groups and higher cation exchange capacity of the MABC10% and MDBC10% composites. In addition, the characterization results also reveal that pore filling, π-π stacking interactions, hydrogen bonding of hydrophilic functional groups, and electrostatic adsorption of oxygen-containing functional groups also contribute prominently to the adsorption of MB. This, along with the greater MB adsorption at higher pH and ionic strengths, suggests the roles in MB adsorption was an electrostatic interaction and an ion exchange mechanism. These results demonstrate that mineral-biochar composites prepared by co-ball milling treatment were promising sorbents of ionic contaminants for environmental applications.

15.
Environ Pollut ; 329: 121702, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094733

RESUMO

The remediation of acid mine drainage (AMD) is particularly challenging because it contains a large amount of Fe3+ and a high concentration of SO42-. To reduce the pollution caused by SO42- and Fe3+ in AMD and realize the recycling of solid waste, this study used distillers grains as raw materials to prepare biochar at different pyrolysis temperatures. Calcium alginate-biochar composite (CA-MB) was further synthesized via the entrapment method and used to simultaneously remove SO42- and Fe3+ from AMD. The effects of different influencing factors on the sorption process of SO42- and Fe3+ were studied through batch adsorption experiments. The adsorption behaviors and mechanisms of SO42- and Fe3+ were investigated with different adsorption models and characterizations. The results showed that the adsorption process of CA-MDB600 on SO42- and Fe3+ could be well described by Elovich and Langmuir-Freundlich models. It was further proved by the site energy analysis that the adsorption mechanisms of SO42- onto CA-MDB600 were mainly surface precipitation and electrostatic attraction, while that of Fe3+ removal was attributed to ion exchange, precipitation, and complexation. The applications of CA-MDB600 in actual AMD proved its good application potential. This study indicates that CA-MDB600 could be applied as a promising eco-friendly adsorbent for the remediation of AMD.


Assuntos
Alginatos , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Carvão Vegetal , Cinética
16.
J Environ Sci (China) ; 130: 174-186, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37032034

RESUMO

Antibiotic pollution has become a global eco-environmental issue. To reduce sulfonamide antibiotics in water and improve resource utilization of solid wastes, phosphogypsum modified biochar composite (PMBC) was prepared via facile one-step from distillers grains, wood chips, and phosphogypsum. The physicochemical properties of PMBC were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Zeta potential, X-ray diffraction (XRD), etc. The influencing factors, adsorption behaviors, and mechanisms of sulfadiazine (SD) and sulfamethazine (SMT) onto PMBC were studied by batch and fixed bed column adsorption experiments. The results showed that the removal rates of SD and SMT increased with the increase of phosphogypsum proportion, while decreased with the increase of solution pH. The maximum adsorption capacities of modified distillers grain and wood chips biochars for SD were 2.98 and 4.18 mg/g, and for SMT were 4.40 and 8.91 mg/g, respectively, which was 9.0-22.3 times that of pristine biochar. Fixed bed column results demonstrated that PMBC had good adsorption capacities for SD and SMT. When the solution flow rate was 2.0 mL/min and the dosage of PMBC was 5.0 g, the removal rates of SD and SMT by modified wood chips biochar were both higher than 50% in 4 hr. The main mechanisms of SD and SMT removal by PMBC are hydrogen bonding, π-π donor-acceptor, electrostatic interaction, and hydrophobic interaction. This study provides an effective method for the removal of antibiotics in water and the resource utilization of phosphogypsum.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Água , Poluentes Químicos da Água/química , Carvão Vegetal/química , Sulfanilamida , Sulfametazina/química , Sulfonamidas , Sulfadiazina , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética
17.
Front Nutr ; 10: 1049055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063333

RESUMO

Background: Many studies have suggested that the serum concentrations of vitamin A (VA) and vitamin E (VE) influence preeclampsia (PE) risk in pregnant women. However, few studies have assessed whether dietary intake and serum concentrations of VA and VE are correlated with PE risk. Methods: A 1:1 matched case-control study was conducted to explore the association between the dietary intake and serum concentrations of VA and VE and the risk of PE in pregnant Chinese women. A total of 440 pregnant women with PE and 440 control pregnant women were included in the study. Dietary information was obtained using a 78-item semi-quantitative food frequency questionnaire. Serum concentrations of VA and VE were measured by liquid chromatography-tandem mass spectrometry. Results: Compared with the lowest quartile, the multivariate-adjusted odds ratios [95% confidence interval (CI)] of the highest quartiles were 0.62 (95% CI: 0.40-0.96, P trend = 0.02) for VA, 0.51 (95% CI: 0.33-0.80, P trend =0.002) for ß-carotene, and 0.70 (95% CI: 0.45-1.08, P trend = 0.029) for retinol. Additionally, for serum VA and VE concentrations, the multivariate-adjusted odds ratios (95% CI) were 2.75 (95% CI: 1.24-6.13, P trend = 0.002) and 11.97 (95% CI: 4.01-35.77, P trend < 0.001), respectively. No significant association was seen between VE intake and PE risk. Conclusions: Dietary VA intake was negatively correlated with PE risk, and serum VA and VE concentrations were positively correlated with PE risk among pregnant Chinese women.

18.
Tuberculosis (Edinb) ; 138: 102293, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549189

RESUMO

BACKGROUND: Both pulmonary tuberculosis (PTB) and cigarette smoke (CS) exposure may lead to lung damage. The potential impact of CS exposure on tuberculosis-associated lung damage and the disturbance of immune cells and mediators involved, need to be further elucidated. METHODS: We firstly evaluated the chest X-ray (CXR) scores of a retrospective cohort of male patients with active PTB, followed for 6 months, and compared the scores between smoker (≥10 pack-years) and non-smoker patients. In a cross-sectional study, we measured the peripheral blood NK cell subsets and plasma inflammatory cytokines in male smoker and non-smoker patients with active PTB before anti-tuberculosis therapy, and the proportions of NK cell subsets and the levels of cytokines were analyzed for correlation with the CXR scores. RESULTS: In the retrospective cohort, male smoker patients with active PTB showed a higher CXR score, characterized by more cavitary lesions, enlarged lymph nodes and emphysema, as compared to non-smokers. The cross-sectional study revealed that the CXR score in smoker patients was correlated inversely with the percentages of blood CD107a+, NKP46+, and TIGIT+ NK cells. CONCLUSION: In patients with active PTB, CS exposure was associated with more severe lung lesions, which were correlated with peripheral NK cell subsets.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Humanos , Masculino , Estudos Transversais , Citocinas , Células Matadoras Naturais , Pulmão/diagnóstico por imagem , Estudos Retrospectivos , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/diagnóstico , Fumantes
19.
Sci Total Environ ; 860: 160289, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36414073

RESUMO

A large amount of wastewater containing nitrogen, phosphorus, and fluorine produces in the production of phosphate fertilizer. In this study, to simultaneously recover nitrogen and phosphorus from phosphorus-containing wastewater and realize the resource utilization of red mud and rape straw, red mud-modified rape straw biochar (RM/RSBC) was prepared by facile one step, and the physicochemical properties were characterized by Zeta potential, SEM-EDS, BET specific surface area (SSA), FTIR, XRD, and XPS. The adsorption performance and mechanisms of ammonium and phosphate onto RM/RSBC were explored through static, fixed-bed column adsorption, and practical wastewater experiments. The results showed that pH = 3.0 and 8.0 were favorable for the removal of phosphate and ammonium, respectively. The main adsorption mechanisms of ammonium and phosphate were the interaction between ammonium and surface functional groups and surface precipitation, respectively. The removal efficiencies of ammonium and phosphate by fixed-bed column adsorption mainly depended on the addition amount of RM/RSBC, the concentration of ammonium and phosphate, and the flow rate. The results of the germination experiment showed that adding > 0.5 wt% of RM/RSBC loaded with ammonium and phosphate promoted the growth of mung beans. This study shows that RM/RSBC can not only recover ammonium and phosphate in wastewater, but also realize the resource utilization of red mud and rape straw.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Fósforo/química , Águas Residuárias , Nitrogênio/química , Fosfatos/química , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/análise , Cinética
20.
Environ Res ; 216(Pt 4): 114732, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402180

RESUMO

Novel microwave biochar derived from wheat straw (WS) using a range of power levels, with activated carbon catalyst as microwave absorber, was produced, characterized and tested as adsorbent of three heavy metals (Pb2+, Cd2+, and Cu2+). The microwave biochar with the greatest specific surface area (156.09 m2 g-1) and total pore volume (0.0790 cm3 g-1) were produced at 600 W (WS600) and 500 W (WS500) power level, respectively. Maximum adsorption capacities of WS500 to Pb2+, Cd2+ and Cu2+ were 139.44 mg g-1, 52.92 mg g-1, and 31.25 mg g-1, respectively. Optimal pH value for heavy metal removal was at range of 5-6, and Pb2+ showed the strongest affinity in competitive adsorption experiments. The adsorption data were fitted better by pseudo-second-order model and Langmuir isotherm, indicating that adsorption process was mainly explained by monolayer adsorption, and chemical adsorption occupied important role. The predominant adsorption mechanisms of heavy metals on microwave pyrolysis biochar included complexation with oxygen-containing functional groups (i.e., carboxylic acid CO and -OH) and precipitation with carbonate. In addition, reused WS600 maintained 76.17% and 96.07% of their initial adsorption capacity for Cu2+ and Cd2+, respectively. These results suggest that microwave biochar produced with activated carbon catalyst has excellent potential for efficient use in the removal of heavy metals from waste water.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Carvão Vegetal/química , Adsorção , Cádmio/análise , Micro-Ondas , Chumbo , Poluentes Químicos da Água/análise , Metais Pesados/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...